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Abstract
The construction of a host of interesting patterns over one and two dimensions, as trans-
formations of multifractal measures via fractal interpolating functions related to simple affine
mappings, is reviewed. It is illustrated that, while space-filling fractal functions most commonly
yield limiting Gaussian distribution measures (bells), there are also situations (depending on
the affine mappings’ parameters) in which there is no limit. Specifically, the one-dimensional
case may result in oscillations between two bells, whereas the two-dimensional case may give
rise to unexpected circle map dynamics of an arbitrary number of two-dimensional circular
bells. It is also shown that, despite the multitude of bells over two dimensions, whose means
dance making regular polygons or stars inscribed on a circle, the iteration of affine maps yields
exotic kaleidoscopes that decompose such an oscillatory pattern in a way that is similar to the
many cases that converge to a single bell.

Keywords : Space-Filling Fractal Functions; Gaussian Distribution; Kaleidoscope Decomposi-
tions; Oscillations Among Bells.
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1. INTRODUCTION

Recently, a multitude of interesting patterns (over
one, two and three dimensions) defined as trans-
formations of multifractal measures via fractal
interpolating functions and the iterations of affine
mappings have been uncovered.1–4 Within this
framework, it has also been established that Gaus-
sian (normal distribution) patterns over one and
two dimensions appear when the fractal functions
fill up space,5–7 and that a wide variety of exotic
kaleidoscopes decompose circular two-dimensional
bells.8,9

The purpose of the present article is to show
that, while the Gaussian limit is the most common
case, there are also interesting cases (depending on
the signs of some affine mapping parameters) in
which there is no limiting convergence to a single
Gaussian bell, but rather oscillations among a mul-
titude of patterns that closely approximate bells.
It is shown that whereas in the one-dimensional
case oscillations between two bells happen in one
specific way, in the two-dimensional case oscilla-
tory behavior among several two-dimensional cir-
cular bells may occur in two different ways that
lead either to a roundabout motion or a star-shaped
criss-crossed movement of an arbitrary number n of
bells, for n > 2.

The organization of this paper is as follows. Given
first is the mathematical construction of the inter-
esting patterns over one dimension that may be
constructed via the notion of projections and the
iteration of affine mappings. Next, the conditions
needed to define a limiting Gaussian pattern are
explained followed by the specific scenario that
would give rise to the limiting oscillation between
two bells. Having established the results in one
dimension, the article then studies generalizations
to two-dimensional Gaussians to identify the rel-
evant scenarios that define circle-map dynamics
among a host of circular bells that jointly sketch
beautiful kaleidoscopes of such ever-rotating attrac-
tors. The article ends with a summary and with
some final remarks.

2. AFFINE MAPPINGS,
FRACTAL FUNCTIONS AND
RELATED MEASURES

The graph G of a fractal interpolating function,
from x to y and passing by N + 1 points on the
plane {(xn, yn);x0 < · · · < xN , n = 0, 1, . . . , N}, is
defined as the unique attractor of N affine maps as

follows:10
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with the scaling parameters dn such that |dn| < 1,
and with the other parameters, an, cn, en, and fn,
satisfying the initial conditions:
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Equations (2) ensure that the attractor G exists
and that it contains the initial interpolating points.
Such conditions also allow computing the parame-
ters an, cn, en, and fn in terms of the scalings dn

and the coordinates of the interpolating points, via
simple linear equations.10 At the end, a unique, and
hence deterministic, set G is found that turns out
to have a fractal dimension D ∈ [1, 2) that is given
by the solution of:11∑

|dn|aD−1
n = 1, if

∑
|dn| > 1 (3)

or that equals 1 otherwise.
In a practical setting, the graph of a fractal func-

tion is obtained sampling the unique attractor point
by point, starting the process at a point already in
G and progressively iterating the affine maps wn

according to, for example, the outcomes of inde-
pendent “coin” tosses.11 As this process is carried
out, it happens that a unique invariant measure is
also induced over G that reflects how the attractor
is being filled up. The existence of such a measure
allows computing unique (and fully deterministic)
projections over the coordinates x and y (say dx
and dy) that turn out to have irregular shapes as
found in a variety of applications in geophysics and
beyond.2−4

Figure 1 shows an example of these ideas for a
fractal function that passes by the three points {(0,
0), (1/2, −0.35), (1, −0.2)}, when the scalings of the
two affine maps are d1 = −0.8 and d2 = −0.6. In
addition to the graph of the attracting fractal func-
tion f , the figure includes the implied projections
dx and dy of the unique measure over G when the
corresponding mappings w1 and w2 are iterated (15
million times) according to a 30–70% proportion,
using independent pseudo-random numbers, start-
ing the process from the mid-point (1/2,−0.35).

As there is a lack of dependence of the coordi-
nate y on x, i.e. as implied by the zero value in the
first component of the affine mappings [Eq. (1)],
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Fig. 1 From a multifractal measure dx to a derived measure dy via a fractal interpolating function f . (The scale in x is from
0 to 1, and the one in y is from −0.38 to 0.06. The vertical scales in dx and dy are not given but both measures are normalized
so that they add up to one).

the measure dx is simply a deterministic bino-
mial multifractal.12 The measure dy, in turn, being
related to dx via the deterministic self-affine frac-
tal function, is just the derived measure of dx via
the function f and is, hence, computed looking at
all possible heights y and adding the corresponding
“probabilities” from “events” that emanate from x.3

As is seen in Fig. 1, the ideas lead to very inter-
esting and “random-looking” measures dy, which
as in the above example resemble, for instance, a
rainfall data set as a function of time.13 As multi-
fractal measures have been found relevant in stud-
ies of turbulence,14 the projection sets given by
these ideas, which turn out to perform a non-
trivial fractional integration of a simple parent
multifractal measure over x, may be assigned an
interpretation as reflections or transformations of
turbulence.15

3. THE PLANE-FILLING CASES
AND THE GAUSSIAN LIMIT

When the interpolating points are equally spaced in
x, all coefficients an happen to be equal to 1/N and
hence the fractal dimension D [Eq. (3)] tends to 2
when the magnitudes of all the scalings dn’s tend to
one. This implies, considering all possible sign com-
binations on such scalings, that there are 2N routes
toward obtaining plane-filling fractal interpolating
functions.

Figure 2 shows an example of such limiting
notions for a fractal function that passes by the
three points {(0, 0), (1/2, 1), (1, 0)}, when the scal-
ings of the two required affine maps are d1 = 0.999
and d2 = −0.999 (the “plus-minus” case) and
when the two maps are iterated (50 million times)
according to a 70–30% proportion. As may be seen,
a Gaussian distribution appears as a projection
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Fig. 2 From a multifractal measure dx to a derived Gaussian measure dy via a space-filling fractal interpolating function f .

from a simple multifractal measure, indicating that
the plane-filling fractal function has the ability to
filter all the spikiness in dx to produce, quite sur-
prisingly, an ever-smooth dy.

This Gaussian limit turns out to be universal,
as the same plane-filling fractal interpolating func-
tion gives a bell from an arbitrary iteration scheme.7

For the aforementioned three interpolating points,
if the two mappings are iterated according to a p−q
proportion, with q = 1 − p, then the resulting bell
simply has a mean µ equal to p. The result is yet
more general as one may replace a simple binomial
multifractal dx by any measure defined over a con-
tinuum on x, to find yet another derived Gaussian
limit.7

For the uniform measure in x, i.e. the 50–
50% proportion with three equally-spaced points
in x, some analytical results have been already
established.7 In this scenario, the mean and

variance are µ = 1/2 and σ2 = 1/(12 − 12z2),
where d1 = −d2 = z and z tending to one. As
the fractal function fills-up the plane when z tends
to one, i.e. as its range grows from −∞ to ∞, the
implied variance also goes to infinity. But, as shown
in Table 1, computed using the Maple V symbolic
language package with a precision of 250 digits, the
first 12 standardized moments of the derived mea-
sure over y, indeed converge, in an orderly manner,
to the moments of the standard bell (as included in
the last column). A formal proof of the Gaussian
result for this case has already been presented and
relies on showing (by induction) that all standard-
ized moments of dy converge to the moments of the
standard Gaussian measure.7

The “minus-plus” case (−d1 = d2 = z) turns
out to yield a fractal interpolating function that
is just the mirror image of the one found via the
“plus-minus” case. As a consequence, when z tends
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Table 1 Standardized Central Moments of dy for the Plus-Minus Case.
Parameters: d1 = −d2 = z and {(0, 0), (1/2, 1), (1, 0)}.

Order z =0.9999 z =0.999999 z =0.99999999 N (0, 1)

3 0.000000000 0.000000000 0.000000000 0.0
4 2.999365046 2.999993650 2.999999937 3.0
5 0.000000000 0.000000000 0.000000000 0.0
6 14.990478199 14.999904750 14.999999048 15.0
7 0.000000000 0.000000000 0.000000000 0.0
8 104.866744091 104.998666509 104.999986665 105.0
9 0.000000000 0.000000000 0.000000000 0.0

10 943.002111830 944.979997736 944.999799975 945.0
11 0.000000000 0.000000000 0.000000000 0.0
12 10362.054001516 10394.669964570 10394.996699588 10395.0

to one, a simple multifractal measure also yields a
unique bell (but now with mean q = 1− p) and the
analytical results, just mentioned, also hold.

When d1 = d2 = z (the “plus-plus” case) the
fractal interpolating function becomes a symmetric
“cloud” built by successive mid-point additions of
powers of z starting with the aforementioned three
interpolating points.9 This case yields a derived
measure eventually defined over the range [0,∞)
whose mass progressively centers at infinity. For
such a case, and for the 50–50% proportion, one
may compute analytically that, in the limit, the
mean and the variance are µ = 1/(2 − 2z) and
σ2 = 1/(12 − 12z2) (the same variance as before),
which both tend to infinity as z tends to one. This
turns out to be a rather curious case, because the
coefficient of variation (i.e. σ/µ) tends to zero, indi-
cating that in the limit the mass concentrates, with
probability one, at infinity. As presented in Table 2,
the lower order moments happen to behave in a
manner (after standardization) that is progressively
consistent with a standard Gaussian distribution,

Table 2 Standardized Central Moments of dy for the Plus-Plus Case. Param-
eters: d1 = d2 = z and {(0, 0), (1/2, 1), (1, 0)}.

Order z =0.9999 z =0.999999 z =0.99999999 N (0, 1)

3 −0.032656325 −0.003265983 −0.000326599 0.0
4 3.001639399 3.000016400 3.000000164 3.0
5 −0.326658273 −0.032659923 −0.003265986 0.0
6 15.035259628 15.000352666 15.000003527 15.0
7 −3.432783098 −0.342932064 −0.034292860 0.0
8 105.643263393 105.006430686 105.000064307 105.0
9 −41.260116637 −4.115251502 −0.411514386 0.0

10 956.901068056 945.118861509 945.001188600 945.0
11 −568.823119975 −56.586203271 −5.658324296 0.0
12 10628.732737598 10397.330855430 10395.023307907 10395.0

but a complete proof of the Gaussian limit is not
available for this case due to a lack of simplification
on the required moment formulas.

4. OSCILLATIONS BETWEEN TWO
BELLS IN ONE DIMENSION

Given the results presented in the previous section,
consideration of the “minus-minus” case (i.e. −d1 =
−d2 = z) would also be expected to give a Gaussian
distribution in the limit when z tends to one. For
such a case, and for the interpolating points used
before, the mean and the variance yield µ = 1/4
and σ2 = 1/(12 − 12z2) (yet the same variance as
before), and it appears that a single bell is found
by considering the first 12 standardized moments
as reported in Table 3. However, close examination
of this case reveals that the limit does not contain
just a single bell but rather oscillations between two
bells, as follows.

When a graph similar to Fig. 2 (based on 50 mil-
lion iterations of suitable maps) is drawn for this
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Table 3 Standardized Central Moments of dy for the Minus-Minus Case.
Parameters: −d1 = −d2 = z and {(0, 0), (1/2, 1), (1, 0)}.

Order z =0.9999 z =0.999999 z =0.99999999 N (0, 1)

3 0.000002939 0.000000003 0.000000000 0.0
4 2.999080244 2.999990800 2.999999908 3.0
5 0.000029380 0.000000029 0.000000000 0.0
6 14.986209090 14.999862001 14.999998620 15.0
7 0.000308244 0.000000309 0.000000000 0.0
8 104.807032780 104.998068023 104.999980680 105.0
9 0.003694899 0.000003704 0.000000004 0.0

10 942.107516384 944.971020552 944.999710200 945.0
11 0.050733888 0.000050923 0.000000051 0.0
12 10347.314696658 10394.521843197 10394.995218301 10395.0

case (not shown), the corresponding limiting bell-
like measure exhibits noticeably larger oscillations
around the mode than what is found for the “plus-
minus” case. At first, this discrepancy appears to
be a matter of a lack of precision in the calculations
due to a small number of “9”s in say z = 0.999, but
further studies revealed that such was not the case.

If the mean from all points within the fractal
interpolating function are computed, that is by fol-
lowing the binary tree of all successive (and equally
spaced) additions up to a given level n, one encoun-
ters oscillatory behavior according to the formula:

µn =
2n + z(−2z)n

(2n+1 + 1)(z + 1)
. (4)

Hence, in the limit, when z tends to one, there hap-
pen to be two bells whose means oscillate between
0 and 1/2, and therefore give an apparent average
of 1/4.

A similar study of the other sign combination
cases (i.e. by layers) reveals convergence to a sin-
gle mean, but the “minus-minus” case indeed yields
unexpected oscillations, irrespective of the interpo-
lating points used in the construction. As the non-
standardized variance increases to infinity and as
the difference in means remains finite for such a
case, the resulting measure appears to be a single
bell but this turns out not to be so, despite the
information to the contrary implied by the first few
moments in Table 3.

5. FRACTAL FUNCTIONS IN
THREE DIMENSIONS

The expressions presented in Eqs. (1) and (2) may
be extended to higher dimensions so that they pro-
duce attracting fractal functions living in three

dimensions. Specifically, the graph G of a fractal
interpolating function, from x into the plane y − z
and passing by N + 1 points in three-dimensional
space {(xn, yn, zn);x0 < · · · < xN , n = 0, 1, . . . , N},
is defined as the unique attractor of N affine maps
as follows:11
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has L2-norm (i.e. the square root of the maximum
eigenvalue of AT

n An) less than 1 and subject to the
initial conditions
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As these generalized fractal functions, with frac-
tal dimensions now ranging from 1 to 3, are com-
puted via iterations, such a process defines, once
again, a unique measure over the new graph G that
may then be used to calculate a joint derived mea-
sure dyz over the plane y − z based on a simple
multifractal measure dx over x.

Figure 3 shows an example, consonant with
Fig. 1, of a three-dimensional fractal function that
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Fig. 3 From a multifractal measure dx to a joint derived measure dyz (with marginals dy and dz) via a fractal interpolating
function f from x to y − z, shown in the x − y and x − z planes.

passes by the points {(0, 0, 0), (1/2, 1, 1), (1, 0, 0)}
and with parameters An [Eq. (6)] given by,

A1 =

(
0 1

2

1
2 0

)
, A2 =

(
0 −1

2

1
2 0

)
, (8)

that generates an interesting joint derived mea-
sure dyz and non-trivial marginal measures dy and
dz, that is over the y and z directions. As before,
these sets are obtained iterating the corresponding
mappings w1 and w2 [Eq. (5)] based on 15 mil-
lion iterations according to pseudo-random num-
bers, following a 70–30% proportion that also yields
a simple binomial multifractal measure dx over x.

As may be appreciated here and elsewhere,
these ideas lead to a host of interesting, com-
plex and “random-looking” patterns dyz, which
resemble sets found in geophysical applications
such as rainfall-radar spatial patterns and contam-
inant plumes in ground waters.2,4,16 Surprisingly,
the transformation of a turbulent-based multifrac-
tal measure via a “simple” three-dimensional fractal

interpolating function encompasses the complex
geometries of a class of natural sets and such a
result hence suggests that the notions may one day
be useful in devising a deterministic language for
complexity.4,15

6. SPACE-FILLING CASES AND
THE TWO-DIMENSIONAL
GAUSSIAN LIMIT

Increasingly space-filling fractal interpolating func-
tions may be obtained as ‖An‖2 → 1 for all n. This
leads, in polar coordinates [Eq. (6)], to the condi-
tions |r(j)

n | → 1, j = 1, 2; θ
(1)
n → θ

(2)
n + kπ, for any

integer k.6 This yields 4N possible paths towards
space-filling functions when considering all possi-
ble sign combinations on the new scaling param-
eters r

(j)
n , as defined in Table 4 for N = 2 affine

mappings.
Figure 4 shows an example of such limiting

notions for a fractal function that passes by the
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Table 4 Sign Combinations on Scaling Parameters
for Three-Dimensional Fractal Interpolating Func-
tions Based on Two Affine Mappings.

Case r
(1)
1 r

(2)
1 r

(1)
2 r

(2)
2 Case r

(1)
1 r

(2)
1 r

(1)
2 r

(2)
2

1 + + + + 9 − + + −
2 + + + − 10 − − + +
3 + − + + 11 − + − +
4 + + − + 12 + − − −
5 − + + + 13 − − + −
6 + − + − 14 − + − −
7 + + − − 15 − − − +
8 + − − + 16 − − − −

aforementioned three points {(0, 0, 0), (1/2, 1, 1),
(1, 0, 0)}, when the parameter matrices An take on
the values,

A1 =
(

0 0.999
0.999 0

)
, A2 =

(
0 −0.999

0.999 0

)
,

(9)

Fig. 4 From a multifractal measure dx to a derived joint circular Gaussian measure dyz via a space-filling fractal interpolating
function f .

and when the two maps are iterated (15 mil-
lion times) according to a 70–30% proportion. As
may be seen, a circular joint Gaussian distribution
appears as a projection from a simple multifrac-
tal measure, hence generalizing what was pre-
viously encountered with two-dimensional fractal
functions.

Even though a complete proof of the Gaussian-
ity of the bell shown in Fig. 4 is not available yet
as formulas defy simplification, it shall be shown
that not all the sign combination cases in Table 4
result in unique bells over two dimensions. Leaving
aside cases that show oscillations, as the “minus-
minus” case in two dimensions, for a later section,
the following are the trends that we have encoun-
tered for groups of sign combinations defined based
on Table 4, and for the specific situation when
θ1 = θ

(1)
1 = θ

(2)
1 and θ2 = θ

(1)
2 = θ

(2)
2 .

Grouping the 16 cases on the scalings into four
groups: A = Cases[1, 7, 10, 16], B = Cases[2, 4,
13, 15], C = Cases[3, 5, 12, 14], and D = Cases[6, 8,
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9, 11], it may be shown numerically (via suitable
iterations) that the coefficient of correlation, ρ, of
their corresponding bells are as follows,

Group A: ρ = 0, except when θ1 = kπ, θ2 = lπ that
give ρ = 1 or ρ = −1, for k, l integers.

Group B: ρ = 0, except when θ1 = kπ that yields
arbitrary correlation ρ ∈ [−1, 1], which depends
on θ2 and the interpolating coordinates, for k
integer.

Group C: ρ = 0, except when θ2 = lπ that gives
arbitrary correlation ρ ∈ [−1, 1], which depends
on θ1 and the interpolating coordinates, for l
integer.

Group D: ρ = 0, except when θ = θ1 = θ2 + kπ
that gives arbitrary correlation ρ ∈ [−1, 1], which
depends on θ and the interpolating coordinates, for
k integer.

Further numerical calculation of means and vari-
ances, over both the y and z components, via itera-
tions as well as by levels (as previously done on the
two-dimensional case), reveals that the most com-
mon derived measures generated by the space-filling
three-dimensional fractal functions are indeed sin-
gle circular bells (ρ = 0) that have finite means, and
variances that grow to infinity as the magnitude of
the scalings tends to one.

There are, however, some noteworthy exceptions
along the lines θ1 = kπ, θ2 = kπ and θ1 = θ2 + kπ,
for an integer k, that generalize what was reported
for the one-dimensional bell(s). The specific trends
along such lines are as follows.

1. For θ = θ1 = kπ: (a) all cases in groups A and
C and cases 8 and 9 (from group D) give a sin-
gle circular bell having finite means; (b) cases 2
and 6 (from groups B and D, respectively) yield a
single bell whose mean converges to (∞,∞), while
cases 4 and 11 (also from groups B and D) result
in another single bell whose mean converges to
(∞,−∞); and (c) cases 13 and 15 (from group B),
which generate non-circular bells as a function of θ,
give two oscillating bells, as in the one-dimensional
case.

2. For θ = θ2 = kπ: (a) all cases in groups A and
B and cases 8 and 9 give a single circular bell with
finite means; (b) cases 3 and 6 result in a single bell
centered at (∞,∞), whereas cases 5 and 11 yield
bells with means (−∞,∞); and (c) cases 12 and 14
result in two oscillating elliptical bells.

3. For θ = θ1 = θ2 + kπ: (a) all cases in groups
B and C and cases 7 and 10 give a single circular
bell with finite means; (b) cases 6 and 11 yield sin-
gle bells whose mean tends respectively to (∞,∞)
and (∞,−∞); (c) cases 8 and 9, yielding nonzero
correlation, correspond (contrary to the results just
reported for the other θ lines) to single bells with
finite means; and (d) cases 1 and 16 appear to con-
verge to a single bell with finite means, but close
examination of the results reveal that they contain
oscillatory behavior that encompasses 2π/θ bells, as
explained in the next section.

7. MULTIPLE BELLS AND THEIR
CIRCLE MAP DYNAMICS

When all scalings r
(j)
n are positive (case 1) or nega-

tive (case 16), and when the angles θ1 = θ
(1)
1 = θ

(2)
1

and θ2 = θ
(1)
2 = θ

(2)
2 are such that θ = θ1 = θ2 +kπ,

for k integer, one encounters seemingly only a sin-
gle circular bell, but detailed calculations by levels
indicate that there are oscillations among a host of
bells depending on the angle θ.

As illustrated in Fig. 5 for the “all plus” case
with angles θ equal to 2π over 3, 4, 5, 6, 7, and
8, the bell’s center travels following a circle, cen-
tered at the apparent single mean, and in conso-
nance with the simple circle map φn+1 = φn + θ.
As seen, the radius of such a circle increases as θ
decreases, for the line joining the points (0, 0) and
(1/2, 1/2) is always inscribed within such a circle.
When 2π/θ = n, the circle map generates a regular
polygon having n sides and hence such a case cor-
responds to n bells that cycle (counter-clockwise)
in such a circle. When θ does not divide 2π, case 1
generates infinitely many bells whose means travel
in a circle.

Figure 6 shows what happens level by level in
the “all minus” case. As may be inferred, such a sign
combination case also yields oscillations among sev-
eral bells, now consonant with the simple dynamics
on a circle, φn+1 = φn + π − θ, which result some-
times in simple polygons (for large angles θ) but
most often stars inscribed on a finite circle that
contains, once again, the line joining the points
(0, 0) and (1/2, 1/2). When 2π/θ = n and n > 6
all patterns are stars and the simple map travels
within the circle (clockwise) yielding sharp oscilla-
tory behavior on the means of the implied n bells.
As before, this case yields infinitely many bells when
θ does not divide 2π.
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Fig. 5 Oscillations on bell’s means computed by layers for “all positive” scalings case. The angle θ takes on the values 2π/3,
2π/4, 2π/5, 2π/6, 2π/7, and 2π/8 (shown left to right and top to bottom).
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Fig. 6 Oscillations on bell’s means computed by layers for “all negative” scalings case. The angle θ takes on the values 2π/3,
2π/4, 2π/5, 2π/6, 2π/7, and 2π/8 (shown left to right and top to bottom).

It should be stressed that cases 1 and 16 only
give many bells along the line θ = θ1 = θ2 + kπ, for
outside such the dynamics no longer happen along a
circle but rather are attracted towards a true center
yielding, at the end, a single bell with finite mean,
as reported earlier.

8. EXOTIC DECOMPOSITIONS
OF OSCILLATORY BELLS

As previously reported,8,9 when the aforementioned
angles associated with the two affine mappings θ1

and θ2 both divide 2π and when such are multiples
of one another, exotic kaleidoscopes of patterns end
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Fig. 7 Selected exotic kaleidoscopic patterns inside oscillating bells. “All positive” scalings case (left) with parameters
{(0, 0, 0), (1/2, 1, 1), (1, 0, 0)}, θ1 = 2π/11, θ2 = 6π/11 and “all negative” scalings case (right) with parameters {(0, 0, 0),
(1/2, 1,−3), (1, 5, 0)}, θ1 = 2π/5, θ2 = π/5. Shown patterns are made up of 20,000 dots.

up decomposing single bells in non-trivial manners.9

It happens that such a behavior turns out to be
valid not only for the cases that define single bells
with finite means but also for the two oscillatory
cases explained in the previous section.

As an illustration, Fig. 7 shows examples of
the beautiful transient patterns that decompose
the oscillatory attractors for the two cases, when the
binary expansion of π is used to guide the iterations
and when the scalings have magnitudes equal to 1−ε
with ε = 10−8. Remarkably, despite the cyclic move-
ment of the dancing bells, the patterns obtained
do not exhibit within them oscillations of any kind
and (as in cases defining single bells) their succes-
sive superposition gives an attractor that appears
to define a single bell.9

9. SUMMARY

This work has illustrated that the transformation
of simple multifractal measures, via fractal interpo-
lating functions (defined over two and three dimen-
sions and computed through the iteration of simple
affine mappings), gives rise to: (a) interesting and
seemingly-random complex patterns if the dimen-
sion of the fractal function is “low,” and (b) lim-
iting Gaussian or “closely” Gaussian-like measures
when the fractal functions fill up the space in which
they live.

It has been explained how the nature of the
limiting Gaussian measures (the bells) turns out
to depend on the sign combinations of the scaling

parameters of the affine mappings, as follows. For
the two-dimensional fractal functions via the use
of two mappings, there are four cases. Two of
them, the “plus-minus” and “minus-plus” cases,
may indeed be proven to define a Gaussian limit
that prior to standardization has a finite mean.
There is a case, the “plus-plus” one, that appears
also to converge to a Gaussian, but such is sub-
stantially different as it has a mean that converges
to infinity (prior to standardization) and a coeffi-
cient of variation that tends to zero. The remaining
“minus-minus” case turns out to be surprising, for
calculation of all points within the fractal function,
by levels, shows convergence to two oscillating bells
(with finite alternating means before standardiza-
tion) rather than just one.

For the three-dimensional fractal functions and
via two affine mappings, there are 16 different
sign combination cases. Whereas the most common
behavior obtained turns out to be convergence to
a single circular Gaussian distribution with finite
means, there are also cases that mimic the results
obtained with the two-dimensional fractal func-
tions. For instance, and similar to the “plus-plus”
case, there are cases that appear to lead to sin-
gle bells that drift to the corners of the four
quadrants, and there are also sign combinations
that, as the “minus-minus” case, result in oscilla-
tions among several bells. In regards to the lat-
ter, it has been shown, analyzing the process by
levels, that the “all plus” and “all minus” cases
surprisingly lead to oscillations among an arbitrary
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number of two-dimensional bells that follow circle-
map dynamics and that result in lovely transient
kaleidoscopic patterns that decompose the limiting
attractors.
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